Applied BioCode

Abstract

Background

Gastroenteritis is the second most common cause of death among children under the age of 5, accounting for 1 in 9 child deaths worldwide; 2,195 children each day. High-throughput multiplex assays can aid in rapid identification of pathogens that can cause outbreaks of diarrhea and for infection control in healthcare settings. Despite recent introduction of molecular multiplex pathogen detection platforms, there is a limited choice of systems that provide high specimen throughput for clinical labs.

To address this need, Applied BioCode has developed the BioCode[®] MDx 3000, an automated, highthroughput molecular diagnostic assay system in a 96-well format. The BioCode[®] GI Pathogen Panel is an 18plex molecular assay for detection of gastrointestinal pathogens which include bacteria (*Campylobacter*, *C*. difficile toxin A/B, Salmonella, Shigella/enteroinvasive E. coli, enteroaggregative E. coli, enteropathogenic E. coli, enterotoxigenic E. coli, shiga toxin-producing E. coli, E. coli O157, Vibrio, Yersinia enterocolitica), viruses (norovirus group I/II, adenovirus F, rotavirus A), and parasites (Cryptosporidium, Entamoeba histolytica, Giardia lamblia).

Methods

The BioCode[®] MDx 3000 platform integrates and automates PCR, post-PCR sample handling and detection steps in a 96-well format. Following extraction of nucleic acids from either unpreserved stool or stool in Cary-Blair transport medium with an automated system, DNA and RNA targets are amplified by one-step RT-PCR. PCR products are captured by target-specific probes coupled to Barcoded Magnetic Beads (BMBs), and the presence of target sequence(s) is detected by a fluorescent conjugate. Qualitative results are determined by a median fluorescent index (MFI) value relative to assay cutoff.

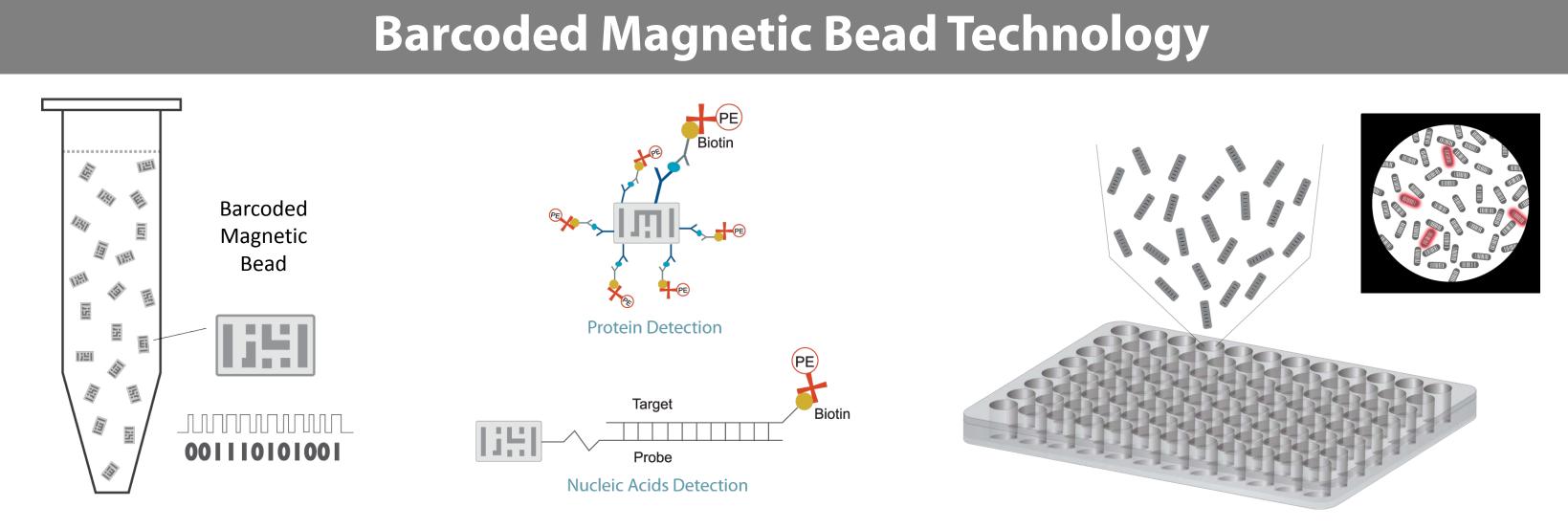


Figure 1. Barcoded Magnetic Beads (BMBs) are coupled to proteins or nucleic acids probes and used for target capture in microtiter plates. In the BioCode[®] GI Pathogen Panel, biotinylated PCR product is captured by target-specific nucleic acid probes coupled to BMBs then labeled by SA-PE for detection.

Three different panels can be performed simultaneously in one plate.

*Corresponding author: maye@apbiocode.com

REPRODUCIBILITY AND FRONT-END EXTRACTION COMPATIBILITY FOR AN 18-PLEX GASTROINTESTINAL PATHOGEN PANEL WITH AN AUTOMATED, HIGH-THROUGHPUT SYSTEM

Jakob Kirchner, Colleen Knoth, Melissa Henrie, Taihra Ul-Hasan, Derrek Mantzke, Anh Pham, Jesse Granados, Kassturi Jeevaprakash, Michael Aye* Applied BioCode, Santa Fe Springs, CA 90670, USA

BioCode® Gastrointestinal Pathogen Panel

Table 1. Organisms and toxins detected by the BioCode[®] GI Pathogen Panel

Bacteria

- ♦ *Campylobacter* spp.
- ♦ Clostridium difficile toxin A/B
- ◆ Enteroaggregative *E. coli* (EAEC)
- ◆ Enteropathogenic *E. coli* (EPEC)
- ◆ Enterotoxigenic *E. coli* (ETEC)
- ♦ Salmonella spp.
- ♦ STEC
- *♦ E. coli* 0157
- ♦ Shigella/ Enteroinvasive *E. coli* (EIEC)
- ♦ Vibrio parahaemolyticus
- ♦ *Vibrio* spp.
- ♦ Yersinia enterocolitica

Reproducibility

Table 2. Reproducibility of BioCode[®] GI Pathogen Panel on BioCode[®] MDx 3000. Detection of representative targets for the BioCode[®] GI Pathogen Panel was highly reproducible across 12 runs (2 instruments, multiple operators over 3 days). The positive agreement was 100% for all targets. The CVs for the study ranged from a low of 6% for *G. lamblia* at 3X LoD to a high of 44% for STEC *stx2* at 1.5 X LoD.

Organism	Concentration	Agreement with expected result	Mean MFI	%CV
Calvasanalla antorica	3 X LoD (4.14 x10 ³ CFU/mL)	(72/72) 100%	9960	21%
Salmonella enterica	1.5X LoD (2.07 x 10 ³ CFU/mL)	(72/72) 100%	7560	17%
Clastridiums difficile (ted D)	3 X LoD (9.9 x 10 ³ CFU/mL)	(72/72) 100%	27322	8%
Clostridium difficile (tcd B)	1.5X LoD (4.95 x 10 ³ CFU/mL)	(72/72) 100%	23158	9%
Ciardia Iarablia	3 X LoD (1.35 x 10 ³ cyst/mL)	(72/72) 100%	38297	8%
Giardia lamblia	1.5X LoD (6.75 x 10 ² cysts/mL)	(72/72) 100%	41062	6%
Adenovirus 40	3 X LoD (1.2 U/mL)	(72/72) 100%	15771	16%
Adenovirus 40	1.5X LoD (0.6 U/mL)	(72/72) 100%	19453	12%
Shiqalla connai	3 X LoD (1.04 x 10 ⁴ CFU/mL)	(72/72) 100%	25934	8%
Shigella sonnei	1.5X LoD(5.22 x 10 ³ CFU/mL)	(72/72) 100%	21924	12%
ETEC	3 X LoD (2.7 x 10 ⁴ CFU/mL)	(72/72) 100%	31803	12%
	1.5X LoD (1.4 e4 cfu/mL)	(72/72) 100%	22959	20%
V. paraheamlyticus	3 X LoD(7.50 x 10 ¹ CFU/mL)	(72/72) 100%	13987	22%
	1.5X LoD(3.75 x 10 ¹ CFU/mL)	(72/72) 100%	17681	18%
CTEC	3 X LoD (1.5 x 10 ⁴ CFU/mL)	(72/72) 100%	25047	25%
STEC	1.5 X LoD (7.5 x 10 ³ CFU/mL)	(72/72) 100%	16655	44%
	3 X LoD (8.4 x 10 ³ CFU/mL)	(72/72) 100%	16526	14%
Campylobacter jejuni	1.5X LoD (4.20 x 10 ³ CFU/mL)	(72/72) 100%	10841	21%
	3 X LoD (1.88 x 10 ⁴ cysts/mL)	(72/72) 100%	16012	16%
Cryptosporidium parvum	1.5X LoD (9.38 x 10 ³ cysts/mL)	(72/72) 100%	19638	17%
	3 X LoD (1.86 x 10 ³ U/mL)	(72/72) 100%	26169	18%
Rotavirus A	1.5X LoD (9.3 x 10 ² U/mL)	(72/72) 100%	24044	22%
Negative	N/A	(71/72) 98.6%	33942	10%

Table 3. Results of Inhibition Study. No inhibition was observed with 16 substances and 8 microbes that may be present in stool or Cary-Blair samples.

Subst	Microbes	
Mucin (3 mg/mL)	Ampicillin (152 μmol/L)	Bacteroides fragilis
Cholesterol (5% w/v)	Vancomycin (12.5 mg/mL)	Blastocystis hominis
Pepto-Bismol (5% v/v)	Metronidazole (14 mg/mL)	Candida albicans
lmodium (5% v/v)	Nystatin (1000 U/mL)	C. difficile non-toxigenic
Laxative (5% v/v)	Mineral Oil (50% w/v)	Enterococcus faecalis
Antacid (Tums; 5% w/v)	Hydrocortisone cream (50% w/v)	<i>E. coli</i> (non-pathogenic)
Maalox (5% w/v)	Neosporin (50% w/v)	Pseudomonas aeruginosa
Naproxen Sodium (14 mg/mL)	Bleach (10%)	Saccharomyces boulardii

Organisms tested at >10⁶ CFU/mL for bacteria and >10⁵ units/mL for parasite or fungus.

Parasites

- ♦ Cryptosporidium spp.
- Entamoeba histolytica
- ♦ Giardia lamblia

Viruses

- ♦ Adenovirus 40/41
- Norovirus GI/GII
- Rotavirus A

Interference

Table 4. Front-end nucleic acids extraction was evaluated with NucliSENS easyMAG[®] (bioMérieux) and MagNA Pure 96 (Roche). Both automated extraction systems gave nucleic acids with good purity and yield from contrived and limited clinical specimens in unpreserved stool and Cary-Blair medium (47 total samples).

	Positive Results reported for			
Target Pathogens	<u>NucliSENS</u> <u>easyMAG</u> ®	<u>MagNA</u> Pure 96		
Clostridium difficile	3	3		
Campylobacter spp.	4	4		
Salmonella spp.	1	2		
<i>Shigella</i> spp./ EIEC	0	0		
EAEC	2	2		
<i>E. coli</i> 0157	1	1		
EPEC	7	7		
ETEC	1	3		
STEC	0	0		
Vibrio parahaemolyticus	0	0		
Vibrio spp.	0	0		
Yersinia enterocolitica	2	2		
Giardia lamblia	1	1		
Cryptosporidium spp.	3	3		
Entameoba histolytica	0	0		
Norovirus (GI & GII)	2	2		
Adenovirus F (40/41)	0	0		
Rotavirus A	0	0		

Table 5. Results of carryover study using BioCode® MDx 3000. No carryover contamination was observed within run or between runs across 3 runs with a high positive Salmonella enterica sample (1.0 x 10⁶ CFU/mL) assayed in a "checkerboard" pattern. MFI values are shown in 96-well format for a representative run. Within run CVs for positive wells were 17%, 21% and 22%.

	1	2	3	4	5	6	7	8	9	10	11	12
A	9345	8	11787	7	10146	4	10554	7	8599	17	9343	1
В	1	10946	9	9005	66	11215	34	11599	4	7792	23	10531
C	14843	4	13137	6	12796	4	14724	2	10891	4	13585	39
D	5	9432	7	9918	4	11509	3	10297	28	10844	144	11276
E	12261	8	12747	52	8133	3	12206	5	12933	1	10807	7
F	7	13599	7	10781	4	10694	23	11448	7	11065	5	11715
G	11976	5	12127	4	7683	8	8746	8	10949	6	13617	7
Н	2	11927	6	9302	28	13442	5	13530	8	12531	25	6781

- "checkerboard pattern".
- workflow and minimal hands-on time.

The authors would like to acknowledge the Technical Services of Roche (Indianapolis, IN) for their contributions in evaluation of MagNA Pure 96 as an extraction method.

NucliSENS easyMAG[®] vs. MagNA Pure 96

Overall		NucliSENS EasyMAG [®]						
Agreement		Pos	Neg	Total				
	Pos	15	3	18				
MagNA Pure 96	Neg	0	29	29				
	Total	15	32	47				
Posi	1	100.0%						
Negative Agreement				90.6%				
Overall Agreement				93.6%				

One sample was invalid with easyMAG[®] extraction, and no samples were invalid with MP96.

Carryover Contamination Study

Conclusions

Using the BioCode[®] MDx 3000 system, the BioCode[®] GI Pathogen Panel specifically and reproducibly detects bacteria/toxins, viruses and parasites.

The BioCode[®] GI Pathogen Panel is compatible with commonly used automated extraction systems.

No inhibition was observed with the substances or microbes tested.

No carry-over contamination was observed, and signals were uniform within an assay run with

The BioCode[®] MDx 3000 system combined with the BioCode[®] GI Pathogen Panel allows users to

perform highly multiplexed molecular detection in a high-throughput, automated format with a simple

Acknowledgment

The BioCode[®] GI Pathogen Panel and BioCode[®] MDx 3000 are currently in development.