Development and Characterization of a Respiratory Pathogen Panel with an Automated High-Throughput System

Sheema Mir, Jesse Granados, Laya Hodaei, Michael Aye* Applied BioCode, Inc., Santa Fe Springs, CA 90670, USA

Abstract

Introduction

Respiratory infections caused by a variety of virus and bacteria, are a major cause of hospitalization and often produce similar presentations. Specific diagnosis therefore relies on laboratory investigation. General pathogen diagnosis was performed via pathogen isolation in cell culture and immunofluorescent assays. However in recent times, reverse transcriptase PCR is used as a sensitive and specific alternative for detection. Using our proprietary Barcoded Magnetic Bead (BMB) technology, Applied BioCode® is developing a multiplex molecular diagnostic assay for detection of respiratory pathogens in a high-throughput 96 well format. The BioCode® Respiratory Pathogen Panel (RPP) is designed for detection of Influenza viruses (Influenza A: subtype H1N1 2009 Pandemic, H1 seasonal, H3, Influenza B), Parainfluenza viruses (type 1, 2, 3, 4A, 4B), RSV, human Metapneumovirus, Rhinovirus/ Enterovirus, Coronavirus (OC43, NL63, 229E, HKU1), Adenovirus and bacteria (Bordetella pertussis, Mycoplasma pneumoiae and Chlamydophila pneumoniae).

Hinman, A. R. 1998. Global progress in infectious diseases control. Vaccine 16:1116-1121

Materials & Methods

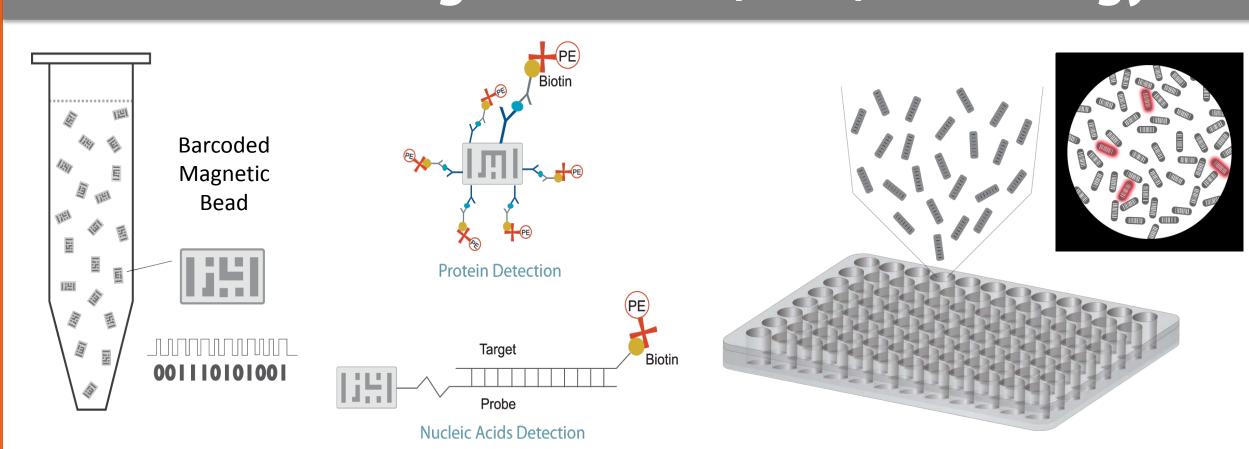
BioCode® MDx 3000, an automated PCR, post-PCR sample handling and detection system in 96-well format was used for the study. Off board automated nucleic acid extraction system was used and pathogenic targets were amplified by one-step RT-PCR. PCR products were captured by target-specific probes coupled to barcoded magnetic beads (BMBs) and fluorescent signal was generated by incubation with a conjugate (Figure 1). Qualitative results were determined by Median Fluorescent Index (MFI) of fluorescent signals from analyte-specific BMBs (Figure 2).

Conclusions

The BioCode® RPP on BioCode® MDx 3000 system specifically and reproducibly detects 17 viruses and 3 bacteria known to cause upper respiratory infections. Combined, the automated system and molecular panel allows users to perform highly multiplexed molecular detection in a high-throughput, automated format with a simple workflow and minimal hands-on time.

- No cross reactivity was observed with organisms tested (Table 1).
- ❖ Preliminary LoD of the BioCode® RPP is shown in Table 2.
- ❖ Inclusivity was tested with several relevant pathogens which were detected with high titer of pathogen (Table 3).
- Method comparison using 307 NPS showed 96% positive agreement (Table 4 & 5) with an IVD comparator.

BioCode® Respiratory Pathogen Panel


Viruses Influenza A Parainfluenza virus type 1 H1N1 2009 pdm Parainfluenza virus type 2 Parainfluenza virus type 3 H1 (seasonal) Parainfluenza virus type 4 Influenza B Coronavirus 229E RSV A/B Coronavirus HKU1 Human metapneumovirus Coronavirus NL63 Adenovirus Coronavirus OC43

Bacteria

Bordetella pertussis Chlamydophila pneumoniae Mycoplasma pneumoniae

Rhinovirus/ Enterovirus

Barcoded Magnetic Bead (BMB) Technology

Figure 1. Barcoded Magnetic Beads (BMBs) are coupled to proteins or nucleic acids probes and used for target capture in microtiter plates. For BioCode® RPP, biotinylated PCR products are captured by target-specific nucleic acid probes coupled to BMBs and then labeled by SA-PE for detection.

BioCode® MDx 3000

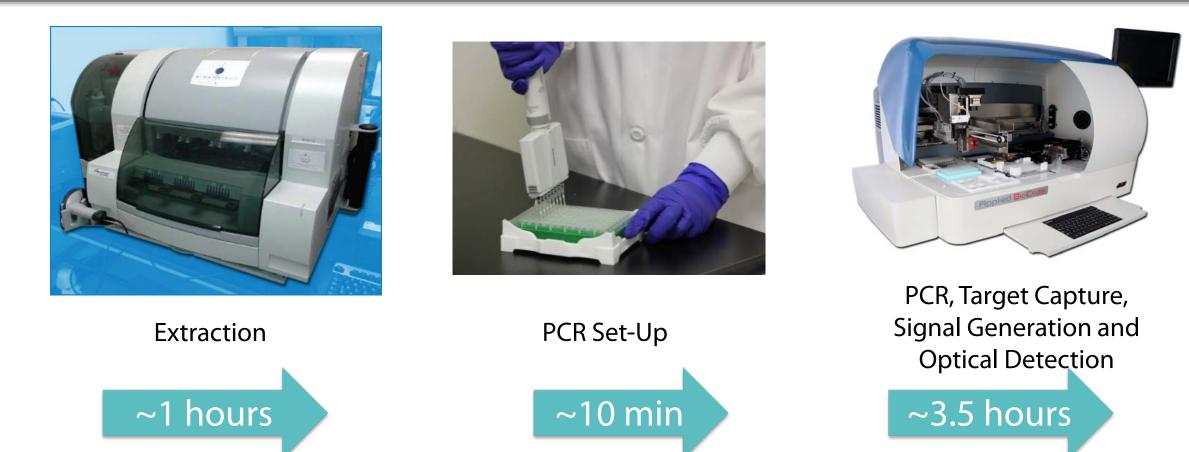
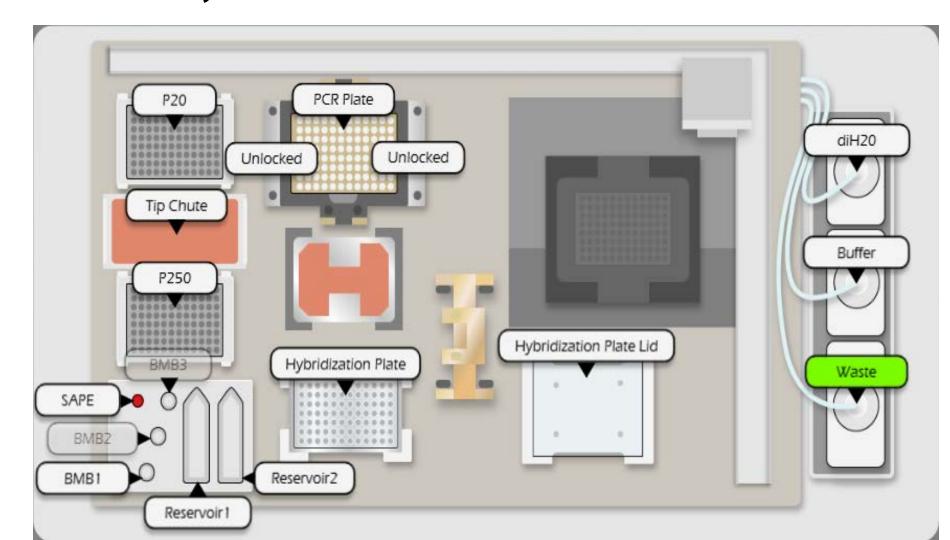



Figure 2. Workflow for BioCode® RPP(top) and schematic for BioCode® MDx 3000 deck layout (bottom). 192 samples in an 8 hour shift with minimal hands on time. This system is designed to run 3 different BioCode® panels simultaneously in one run.

Cross Reactivity Studies

Table 1. Microorganisms tested for Cross Reactivity

Bacteria and Fungi				
E. Coli 35328	Pseudomonas aeruginosa	Candida albicans		
E.coli BAA-1431	Staphylococcus aureus 3300	Klebsiella pneumoniae		
Haemophilus influenzae	Staphylococcus epidermidis	Moraxella catarrhalis		
Lactobacillus acidophilus	Streptococcus intermedius	Neisseria elongata		
Lactobacillus reuteri Strain	Streptococcus pyogenes	Chlamydia trachomatis		
Neisseria gonorrhoeae	Streptococcus salivarius	Lactococus lactic		
Acinetobacter baumannii				
	Viruses			
Epstein-Barr Virus (EBV)	Bocavirus	Cytomegalovirus (CMV)		
Herpes Virus	Mumps			
	6	r		

No cross reactivity was observed with bacteria ($\geq 10^6$ CFU/mL), viruses ($\geq 10^5$ TCID₅₀/mL)

Preliminary Limit of Detection (LoD)

Table 2. Limit of Detection (LoD) for the BioCode® RPP performed on the BioCode® MDx 3000 system

Organism	Source	Preliminary LoD			
Viruses					
Human Parainfluenza 1	Zeptometrix 0810014CF	≤1.25 TCID50/mL			
Human Parainfluenza 2	ATCC VR92	≤10 TCID50/mL			
Human Parainfluenza 3	Zeptometrix 0810016CF	≤1.25 TCID50/mL			
Human Parainfluenza 4	Zeptometrix 0810060CF	≤1.25 TCID50/mL			
Rhinovirus	Zeptometrix 0810012CFN	≤10 TCID50/mL			
RSV A & B	Zeptometrix 0810040ACF	≤1.25 TCID50/mL			
Coronavirus OC43	Zeptometrix 0810024CF	≤1.25 TCID50/mL			
Coronavirus 229E	Zeptometrix 0810229CF	≤1.25 TCID50/mL			
Coronavirus NL63	Zeptometrix 0810228CF	≤1.25 TCID50/mL			
Coronavirus HKU1	IDT- Ultramer	≤100 copies/mL			
Human Metapnuemovirus	Zeptometrix 0810161CF	≤100 TCID50/mL			
Influenza A H3	Zeptometrix 0810252CF	≤10 TCID50/mL			
Influenza A H1 subtype	Zeptometrix 0810036CF	≤1.25 TCID50/mL			
Influenza A H3 subtype	Zeptometrix 0810252CF	≤10 TCID50/mL			
Influenza A H1N1 2009pdm	Zeptometrix 080109CFN	≤10 TCID50/mL			
Influenza B	Virapur C1320H	≤10 TCID50/mL			
Adenovirus	Zeptometrix 0810050CF	≤1 TCID50/mL			
Bacteria					
Bordetella pertusis	Zeptometrix 0801460	≤1.25 CFU/mL			
Mycoplasma pneumoniae	Zeptometrix 0810579	≤10 CFU/mL			
Chlamydophila pneumoniae	ATCC VR-1360	≤10 CFU/mL			

Method Comparison Study

Table 5. Clinical Agreement: BioCode® RPP vs Comparator

Overall Agreement		eSensor RP		
		Pos	Neg	Total
	Pos	307	0	307
BioCode® RPP	Neg	12	20	32
	Total	319	20	339
		Positive Agreement 969		96%
		Negative Agreement 100		100%

Inclusivity Study

Table 3. Microorganisms detected for Inclusivity of the BioCode® RPP

Organisms I	Detected
Influenza A/Denver/1/1957	Coronavirus 229E
Influenza A/Fort Monmouth/01/1947	Coronavirus NL63
Influenza A/New Jersey/8/1976	Coronavirus OC43
Influenza A/Taiwan/42/06	Adenovirus type 1
Influenza A/Singapore/63/04	Adenovirus type 3
Influenza A/ Aichi/2/68	Adenovirus type 4
Influenza A/Port Chalmers/1/1973	Adenovirus type 5
Influenza A/Switzerland/9715293/2013	Adenovirus type 7A
Influenza A/Wisconsin/15/2009 H3N2	Adenovirus type 8
Influenza A/PR/8/34	Adenovirus type 14
Influenza A/Beijing/262/95	Adenovirus type 37
Influenza A/Brisbane/59/2007 H3N2	Respiratory Syncytial Virus type A
Influenza A/Uruguay/706/07	Respiratory Syncytial Virus type B
Influenza A/New Caledonia/20/99	Rhinovirus Type B14
Influenza A/Solomon Islands/03/3006	Metapnuemovirus 3 Type B1
Influenza A/H3N2/Hong Kong	Metapnuemovirus 20 Type A
Influenza A/H3N2/Victoria/3/1975	Metapnuemovirus 316 Type A
Influenza B/Maryland/1/59	Metapnuemovirus 213 Type A
Influenza B/Phuket/3073/2013	Metapnuemovirus 9 Type A
Influenza B/GL/1739/55	Metapnuemovirus 16 Type A
Influenza B/Hong Kong/5/1972	Enterovirus Type 68
Influenza B/Brisbane/60/2008	Coxsackievirus Type A9
Influenza B/Florida/04/06	Echovirus Type 6
Influenza B/Christ Church	Echovirus Type 9
Influenza B/Sydney/507/2006	Echovirus Type 30
Influenza B/Ohio/01/2005	Echovirus Type 11
Influenza B/Malaysia/2506/04	Bordetella pertusis A639
Influenza B/Texas/06/2011	Bordetella pertusis E431
Influenza B/Nevada/03/2011	

Method Comparison Study

Table 4. Comparison of BioCode® RPP results vs Comparator

	Positive Results reported by	
Target Pathogens	BioCode® RPP	<u>eSensor RP</u>
Influenza A (not subtyped)	17	17
Influenza A H3	18	20
Influenza A H1N1 2009pdm	18	20
Influenza A H1	2	2
Influenza B	20	20
RSV	20	20
Rhinovirus/ Enterovirus	18	20
Metapneumovirus	27	28
Parainfluenza virus	74	75
Coronavirus	30	33
Adenovirus	18	20
B. pertussis	20	20
M. pneumoniae	14	14
Negative NPS	20	20