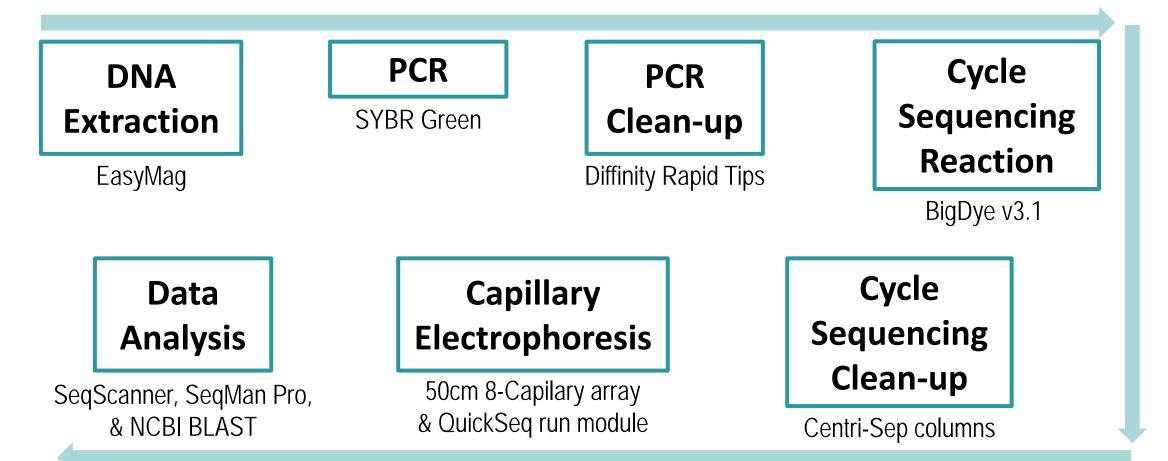
Applied BioCode


Introduction

Applied BioCode has developed an automated high-throughput molecular diagnostic assay system in a 96-well format. The BioCode GI Pathogen Panel is a 18-plex molecular assay for detection of gastrointestinal pathogens which include bacteria (*Campylobacter, C. difficile* toxin A/B, *Salmonella,* Shigella/ enteroinvasive *E. coli*, enteroaggregative *E. coli*, enteropathogenic *E. coli*, enterotoxigenic *E. coli*, shiga toxin-producing *E. coli*, *E. coli* O157, *Vibrio, Yersinia enterocolitica*), viruses (norovirus group I/II, adenovirus F, rotavirus A), and parasites (*Cryptosporidium, Entamoeba histolytica, Giardia lamblia*).

To support the clinical trials of the BioCode GI Pathogen Panel, we developed Reference Assays (composite comparator PCR/Sequencing assays) for method comparison for 7 select targets of the Panel.

Methods

Two different SYBR Green PCR/Sequencing assays were validated for each of the 6 targets while ETEC required three assays. NucliSENS® easyMAG[™] (bioMérieux) extraction was used for the assays. Targets were amplified with real-time SYBR Green PCR using ABI 7500 system. Presumptive positive results, based on assay-specific Tm ranges, were confirmed by bi-directional sequencing with BigDye Terminator chemistry and ABI 3500 Analyzer. The resulting sequence data was analyzed with ABI Sequence Scanner Software V.2 and SeqMan Pro of the Lasergene 12 Core Suite Software to generate PHRED scores and contig length and ambiguous nucleotides, respectively. NCBI BLAST of each of resulting contigs was performed to generate Identity to Reference, Query Coverage, and Expected Value (E-Value).

Figure 1. Workflow for Sequencing-Based Reference Assays for the BioCode GI Pathogen Panel. The Reference assays utilize automated nucleic acid extraction (bioMérieux NucliSENS® easyMAG[™] System). Target amplification and confirmation of positive result are achieved with real-time SYBR Green PCR using ABI 7500 system followed by Bi-directional Sequencing (BigDye Terminator chemistry and capillary electrophoresis) with ABI 3500 Analyzer.

Limit of Detection (LoD) Study

Table 1. Limit of Detection (LoD) for the Sequencing-Based ReferenceAssays. The LoD was determined by extracting 20 replicates at the level thatwas detected 95% of the time.

Bacteria/Parasites/Viruses	Limit of Detection Unpreserved Stool	Limit of Detection Cary Blair Stool
Enteroaggregative <i>E. coli (EAEC) aggR</i> + Assays 1 & 2	5.0 E+2 CFU/mL	1.7 E+2 CFU/mL
Enteropathogenic <i>E. coli</i> (EPEC) Assay 1	1.0 E+3 CFU/mL	3.3 E+2 CFU/mL
Enteropathogenic <i>E. coli</i> (EPEC) Assay 2	5.0 E+3 CFU/mL	1.7 E+2 CFU/mL
Enterotoxigenic <i>E. coli</i> (ETEC)- LT & ST1a Assays	1.0 E +4 CFU/mL	3.3 E+3 CFU/mL
Enterotoxigenic <i>E. coli</i> (ETEC)- ST1b Assay	1.0 E+5 CFU/mL	3.3 E+4 CFU/mL
Cryptosporidium spp (C. parvum) Assays 1 & 2	5.0 E+4 oocysts/mL	1.7 E+3 oocysts/mL
Giardia lamblia Assay 1	1.0 E+3 oocysts/mL	3.3 E+2 oocysts/mL
Giardia lamblia Assay 2	1.5 E+3 oocysts/mL	5.0 E+2 oocysts/mL
Entamoeba histolytica Assays 1 & 2	5 cysts/mL for	1.7 cysts/mL for
Adenovirus 40	1.0 E+1 TCID ₅₀ /mL	3.3 TCID ₅₀ /mL
Adenovirus 41	1.0 E+1 TCID ₅₀ /mL	3.3TCID ₅₀ /mL

Validation and Performance of Sequencing-Based Reference Assays for BioCode GI Panel Anh Pham, Derrek Mantzke, Colleen Knoth, Michael Aye* Applied BioCode, Santa Fe Springs, CA 90670, USA

Analytical Reactivity/ Inclusivity Study

Table 2. Inclusivity Study for the Sequencing-Based Reference Assays. Nucleic acid extraction of all organisms listed using bioMérieux easyMAG was performed in triplicates on contrived stool samples having concentration of 3X LoD predetermined for each of the Reference Assays.

•		-			
Species/Strain/ Isolate/Toxinotype	Source	Species/Strain/ Isolate/Toxinotype	Source		
Enteroaggregative <i>E. coli</i> (EAEC) aggR		Giardia lambia/intestinalis	waterborne P101		
O92:H33 Escherichia coli (EAEC)	STEC JM221 TW04440	Giardia lambia/intestinalis	BEI NR-9231		
<i>E. coli</i> O44:H18	STEC 042 TW04393 Giardia lambia/intestinalis		BEI NR-9232		
<i>E. coli</i> O111a, 111b:K58:H21	ATCC 29552	Giardia lambia/intestinalis	BEI NR-9234		
<i>E. coli</i> O104:H4	ATCC BAA-2326	Giardia lambia/intestinalis	BEI NR-9235		
E. coli, Strain NCDC U14-41	BEI NR-102	Entamoeba histolytica	BEI NR-176		
Enteropathogenic <i>E.coli</i> (EPEC) eae		Entamoeba histolytica	BEI NR-177		
O127:H6 Escherichia coli (EPEC)	STEC E2348/69 TW06375	Entamoeba histolytica	BEI NR-178		
O111:H2 Escherichia coli (EPEC)	STEC DEC12D	Entamoeba histolytica	BEI NR-179		
O128:H2 Escherichia coli (EPEC)	STEC DEC11D	Entamoeba histolytica	BEI NR-180		
O55:H6 Escherichia coli (EPEC)	STEC DEC1E	Cryptosporidium spp.*			
O86:H34 Escherichia coli (EPEC)	STEC C927-81 TW01273	Cryptosporidium parvum subtype /IIaA17G1R1	UKCR UK28		
O142:H6 Escherichia coli (EPEC)	STEC C765-82 TW01271	Cryptosporidium parvum subtype /IIaA15G2R1	UKCR UK29		
O114:H2 Escherichia coli (EPEC)	STEC 3448-87 TW00148	Cryptosporidium parvum subtype /IIaA19G1R1	UKCR UK30		
O119:H2 Escherichia coli (EPEC)	STEC LT119-80 TW07099	Cryptosporidium parvum subtype /IIdA22G1	UKCR UK31		
Escherichia coli, Strain CDC	BEI NR 99	Cryptosporidium parvum subtype /IIdA15G1	UKCR UK32		
Enterotoxigenic E.coli (ETEC) LT/ST		Cryptosporidium hominis subtype IdA18	UKCR UKH12		
O78:H11 Escherichia coli strain H10407 (ETEC)	ATCC 35401	Cryptosporidium hominis subtype ibA10G2	UKCR UKH13		
O25:K98 <i>E.coli</i> (ETEC)	ATCC 43886	Cryptosporidium hominis subtype IaA14R3	UKCR UKH14		
O78:K80:H12 <i>E.coli</i> (ETEC)	ATCC 43896	Cryptosporidium hominis	NR2520		
O8:K85:K99 <i>E.coli</i> (ETEC)	ATCC 31618	Cryptosporidum meleagridis	UKMEL10		
Adenovirus 40/41					
Sample 3		Sample 38			
Sample 20	Clinical Samples	Sample 60	Clinical Samples		
Sample 30		Sample 112			

* Due to lack of titered specimens, *Cryptosporidium* DNA samples obtained from *Cryptosporidium* Reference Unit (Public Health Wales, UK) were tested at ten-fold dilution of each of the *Cryptosporidium* DNA stocks.

Method Comparison Study

Table 3. Method Comparison Study for the Sequencing-Based Reference Assays. Retrospective clinical samples were used for the Method Comparison. A total of 96 specimens (24 EAEC, 52 EPEC, 12 ETEC, 4 adenovirus 40/41, 7 *Giardia*, 9 *Cryptosporidium*, and 3 *E. histolytica*) were tested and compared with results from FDA-cleared BioFire FilmArray[®] GI Panel and Luminex xTAG[®] GPP.

Pathogens	Positive Agreement Vs. BioFire FilmArray®		Positive Agreement Vs. Luminex xTAG® GPP	
	TP/(TP+FN)	%	TP/(TP+FN)	%
Enteroaggregative E. coli	13/17	76%	7/7	100%
Enteropathogenic <i>E. coli</i>	27/28	96%	24/24	100%
Enterotoxigenic <i>E. coli</i>	4/5	80%	7/7	100%
Cryptosporidium spp.	5/7	71%	2/2	100%
Entamoeba histolytica	0/0	N/A*	1/3	33%
Giardia lamblia	2/2	100%	0/5	0%
Adenovirus 40/41	1/1	100%	3/3	100%
Total	52/60	87%	44/51	86%

* No Entamoeba histolytica positives were tested with BioFire FilmArray

Table 4. Specificity/Cross Reactivity Study for the Sequencing-Based Reference Assays. Nucleic acid extraction of all organisms using bioMérieux easyMag were performed in triplicates on contrived stool samples having concentration of 10⁶ CFU/mL of bacteria or 10⁵ Units/mL of viruses or parasites.

Bacteria						
Aeromonas caviae	Cedecea davisae	Enterococcus faecalis	Faecalibacterium prausnitzii	Megasphaera elsdenii		
Aeromonas hydrophila	Chlamydia trachomatis	Pseudomonas aeruginosa	Fusobacterium varium	Morganella morganii		
Abiotrophia defectivia	Citrobacter freundii	Shigella boydii (Type 1)	Gardnerella vaginalis	Peptoniphilus asaccharolyticus		
Acinetobacter baumannii	Clostridium difficile non-toxigenic	Shigella dysenteriae, (Type 1) Newcastle 1934	Gemella morbillorum	Shigella/EIEC		
Alcaligenes faecalis	Clostridium difficile toxin A/B	Saccharomyces boulardii	Haemophilus influenzae	Peptostreptococcus anaerobius		
Arcobacter butzleri	Clostridium histolyticum	Salmonella bongori	Hafnia alvei	Plesiomonas shigelloides		
Bacillus cereus	Clostridium perfringens	Grimontia hollisae (formerly vibrio)	Helicobacter pylori	Porphyromonas asaccharolytica		
Bacteroides fragilis	E. coli Non pathogenic strain	Serratia mercescens	Klebsiella pneumoniae	Prevotella melaninogenica		
Leminorella grimontii	Escherichia coli non pathogenic	Shewanella algae	Lactobacillus acidophilus	Veillonella parvula		
Bifidobacterium breve	Shiga-toxin producing <i>E. coli (STEC & O157</i>)	Staphylococcus aureus	Lactococcus lactis	Shigella sonnei		
Campylobacter jejuni sub sp .jejuni	Edwardsiella tarda	E. coliO124:HNM (EIEC)	Camplyobacter coli	Vibrio vulnificus		
Proteus penneri	Enterobacter cloacae	Escherichia hermannii	Listeria monocytogenes	Streptococcus salivarius		
Provedencia alcalifaciens	Vibrio mimicus	Vibrio alginolyticus	Yersinia enterocolitica	N/A		
Shigella flexneri, strain 24570 (Type 2a)	Vibrio parahaemolyticus	Yersinia bercovieri	N/A	N/A		
Viruses		Parasites				
Adenovirus 3	Adenovirus 14	Norovirus GI	Cryptosporidium meleagridis*	Toxoplasma gondii		
Adenovirus 4	Adenovirus 37	Norovirus GII	Giardia muris	Encephalitozoon intestinalis		
Adenovirus 7a	Cytomegalovirus (CMV)	Rotavirus A	Encephalitozoon cuniculi	Yeasts		
Adeno virus 8	Enterovirus 68	Coxsackie virus	Toxoplasma gondii	Candida albicans		
Rhinovirus 1A	N/A	N/A	N/A	N/A		

*C. meleagridis was detected by Cryptosporidium spp. SYBR Green PCR/Sequencing assays 1 and 2. NBCI BLAST information of forward and reverse primers of Cryptosporidium spp. Assays indicated highly significant match of sequence of C. meleagridis (7.0 x E^{-04} E-value and 100% Identity to Reference). C. meleagridis has been identified in \leq 1% of persons with diarrhea, and the infectivity and virulence of C. meleagridis was similar to that of C. parvum or C. hominis. It is relevant that in addition to detecting C. parvum and C. hominis, Cryposporidium spp. SYBR Green PCR/Sequencing assays amplify and detect C. meleagridis.

The sensitivity of the Sequencing-Based Reference Assays were slightly better for stool in Cary-Blair.

The Sequencing-Based Reference Assays detected different strains representing various temporal, geographic, and genetic diversity of targets that each of the assay was designed to amplify, detect and sequence.

✤ Positive agreement vs. BioFire FilmArray[®] for Adenovirus and *Giardia lamblia* targets were 100% while positive agreement for EPEC, ETEC, EAEC, and *Cryptosporidium spp* were 96%, 80%, 76%, and 71%, respectively. Overall positive agreement was 87%.

Positive agreement vs. Luminex xTAG[®] GPP for Adenovirus, Cryptosporidium spp., EAEC, EPEC, and ETEC and were 100% while positive agreement for Entamoeba histolytica and Giardia lamblia was 33% and 0%, respectively. Overall positive agreement was 86%.

✤ The Specificity/Cross Reactivity study shows each of the Sequencing-Based Reference Assays did not cross-react with the organisms tested: bacteria (\geq 10⁶ CFU/mL), viruses or parasites (\geq 10⁵ Units/mL).

The Sequencing-Based Reference Assays for select GI pathogens are highly sensitive, specific, and accurate, and can be used as composite comparator PCR/Sequencing assays to rapidly detect and differentiate 7 select targets of the BioCode Gastrointestinal Pathogen Panel.

Specificity/ Cross Reactivity Study

Conclusions